190 research outputs found

    Verification of Synchronization-Related Properties for UML-MARTE RTES Models with a Set of Time Constraints Dedicated Formal Semantic

    Get PDF
    Critical Real-Time Embedded Systems (RTES) have strong requirement with respect to system's reliability. In Model-Driven Engineering (MDE), verification at early phases of the system lifecycle is an important issue, especially for time constraints in UML-MARTE RTES model. In order to assess that the time requirements are met by the behavior models, the key challenging problem is to transform these time constraints from the UML-MARTE model to computable formal semantics that provide time properties verification. Moreover, to allow the application of this formal semantic to real industrial use cases, the performance of verification should scale well. In this paper, we present a set of time constraint dedicated semantics under the framework for UML-MARTE RTES model's time requirement assessment. We focus on how to specify a set of synchronization-related constraints between system's tasks relying on a formal semantics and to accomplish verification by an efficient observer-based model checking method using Time Petri Nets. We analyse the method's computational complexity and demonstrate the method's scalability by illustrating some performance results

    Time Properties Verification Framework for UML-MARTE Safety Critical Real-Time Systems

    Get PDF
    Time properties are key requirements for the reliability of Safety Critical Real-Time Systems (RTS). UML and MARTE are standardized modelling languages widely accepted by industrial designers for the design of RTS using Model-Driven Engineering (MDE). However, formal verification at early phases of the system lifecycle for UML-MARTE models remains mainly an open issue. In this paper, we present a time properties verification framework for UML-MARTE safety critical RTS. This framework relies on a property-driven transformation from UML architecture and behaviour models to executable and verifiable models expressed with Time Petri Nets (TPN). Meanwhile, it translates the time properties into a set of property patterns, corresponding to TPN observers. The observer-based model checking approach is then performed on the produced TPN. This verification framework can assess time properties like upper bound for loops and buffers, Best/Worst-Case Response Time, Best/Worst-Case Execution Time, Best/Worst-Case Traversal Time, schedulability, and synchronization-related properties (synchronization, coincidence, exclusion, precedence, sub-occurrence, causality). In addition, it can verify some behavioural properties like absence of deadlock or dead branches. This framework is illustrated with a representative case study. This paper also provides experimental results and evaluates the method's performance

    A transformation-driven approach to automate feedback verification results

    Get PDF
    International audienceThe integration of formal verification methods in modeling activities is a key issue to ensure the correctness of complex system design models. In this purpose, the most common approach consists in defining a translational semantics mapping the abstract syntax of the designer dedicated Domain-Specific Modeling Language (DSML) to a formal verification dedicated semantic domain in order to reuse the available powerful verification technologies. Formal verification is thus usually achieved using model transformations. However, the verification results are available in the formal domain which significantly impairs their use by the system designer which is usually not an expert of the formal technologies. In this paper, we introduce a novel approach based on Higher-Order transformations that analyze and instrument the transformation that expresses the semantics in order to produce traceability data to automatize the back propagation of verification results to the DSML end-user

    Comparing transformation languages for the implementation of certified model transformations

    Get PDF
    Precise specifications are needed for verifying and certifying the correct behavior of critical systems. However, traditional proofreading and test based verification techniques are usually not exhaustive and as systems become more complex, their coverage is less and less adequate. Use of models allows early verification, validation and automated building of "correct by construction" systems. Our work targets formal specification and verification of model transformations. In a previous paper we tackled the problem of writing formal speci- fications for model transformations independently to the implementation technique. In this paper we investigate the implementation phase of these specifications as model transforma- tions using traditional MDE techniques and the difficulties encountered while generating the verification materials

    Specification and Validation of Model Transformations for Certified Systems' Development

    Get PDF
    Certifying critical systems requires very precise specifications and ability to ver- ify each development step. However, proofreading and test based verification are usually not exhaustive and as systems get more complex, their coverage is less and less adequate. Use of models allows early verification, validation and automated building of "correct by construction" systems. Our work targets formal specification and verification of model trans- formations. Such techniques provide significantly higher confidence of correctness and can even reach exhaustiveness. In this paper, we rely on common model driven engineering tech- niques to allow common engineers to write these specifications and to conduct verification. We propose to use a simple transformation model for specifying the expected relation between the source and target models after the transformation. The source and target metamodels are extended with a traceability model that defines a set of links that must exist after the transformation and whose correctness is specified as OCL constraints

    A Multi-Core Interference-Aware Schedulability Test for IMA Systems, as a Guide for SW/HW Integration

    Get PDF
    International audienceIn this paper we propose a framework for the automated integration and timing analysis of IMA (Integrated Modular Avionics) applications on multi-core environments. To do so, we present a derivation of the response time analysis formulation by Kim et al. in [12] that takes into account inter-task interference due to sharing the access to the main memory. We adapt the work in [12] to propose a sufficient schedulability test that is adapted both to IMA systems and heterogeneous multi-core platforms. We then exploit this test to guide the design space exploration during the SW/HW integration phase, to select a partition-to-core allocation so that all deadlines are met despite the existence of hardware interference

    Leveraging formal verification tools for DSML users: a process modeling case study

    Get PDF
    15 pagesIn the last decade, Model Driven Engineering (MDE) has been used to improve the development of safety critical systems by providing early Validation and Verification (V&V) tools for Domain Specific Modeling Languages (DSML). Verification of behavioral models is mainly addressed by translating domain specific models to formal verification dedicated languages in order to use the sophisticated associated tools such as model-checkers. This approach has been successfully applied in many different contexts, but it has a major draw- back: the user has to interact with the formal tools. In this paper, we present an illustrated approach that allows the designer to formally express the expected behavioral properties using a user oriented language -- a temporal extension of OCL --, that is automatically translated into the formal language; and then to get feedback from the assessment of these properties using its domain language without having to deal with the formal verification language nor with the under- lying translational semantics. This work is based on the metamodeling pattern for executable DSML that extends the DSML metamodel to integrate concerns related to execution and behavior

    Online diagnosis of accidental faults for real-time embedded systems using a hidden Markov model

    Get PDF
    International audienceThis article proposes an approach for the online analysis of accidental faults for real-time embedded systems using hidden Markov models (HMMs). By introducing reasonable and appropriate abstraction of complex systems, HMMs are used to describe the healthy or faulty states of system’s hardware components. They are parametrized to statistically simulate the real system’s behavior. As it is not easy to obtain rich accidental fault data from a system, the Baum–Welch algorithm cannot be employed here to train the parameters in HMMs. Inspired by the principles of fault tree analysis and the maximum entropy in Bayesian probability theory, we propose to compute the failure propagation distribution to estimate the parameters in HMMs and to adapt the parameters using a backward algorithm. The parameterized HMMs are then used to online diagnose accidental faults using a vote algorithm integrated with a low-pass filter. We design a specific test bed to analyze the sensitivity, specificity, precision, accuracy and F1-score measures by generating a large amount of test cases. The test results show that the proposed approach is robust, efficient and accurate

    Time Properties Dedicated Transformation from UML-MARTE Activity to Time Petri Net

    Get PDF
    Critical Real-Time Embedded Systems (RTES) have strong requirement regarding system's reliability. UML and its pro- file MARTE are standardized modeling language that are getting widely accepted by industrial designers to cope with the development of complex RTES. Relying on Model-Driven Engineering (MDE), critical time properties' verification in UML-MARTE model at early phases of the system lifecycle becomes possible. However, many challenges still exist. A key challenge is to eliminate the gap between UML semi- formal semantics and fully formal executable semantics us- ing model transformation. The model transformation must ensure on the one hand the consistency between high-level user dedicated models and lower-level verification dedicated ones, and on the other hand that the subsequent verification is not too expensive and can be applied to real size industrial models. This paper presents an approach to translate UML- MARTE Activity Diagrams to Time Petri Net (TPN) with the aim of verifying efficiently time properties. This work is under the framework of the UML-MARTE Model Checker which is dedicated to verifying time properties (synchroniza- tion, schedulability, boundedness, WCET, etc.) in RTES. This contribution focuses on how to define the TPN formal semantics to avoid the core problem of state space explosion in model checking. The proposed method is validated using a representative case study. Experimental results are given that demonstrate the method's performance
    • …
    corecore